

Bundesinstitut für Risikobewertung

IRMS – Part 5 – GC/C-IRMS and LC-IRMS

Dr. Melanie Gimpel

International Methods

Year	Method	Product	Fraction	Techniques	Isotope ratios
1987	OIV method OIV-MA-AS311-05	Wine	Ethanol	SNIF-NMR	(D/H) _I , (D/H) _{II} , R
1991	AOAC method 998.12	Honey	Honey, proteins	IRMS	¹³ C/ ¹² C
1993	CEN (TC174 N108, ENV 12140)	Fruit juice	Sugar	IRMS	¹³ C/ ¹² C
1995	AOAC method 995.17	Fruit juice	Ethanol (from fermentation)	SNIF-NMR	(D/H) _I , (D/H) _{II} , R
1996	OIV method OIV-MA-AS2-12	Wine	Water	IRMS	¹⁸ O/ ¹⁶ O
1997	CEN (TC174 N109, ENV 12141)	Fruit Juice	Water	IRMS	¹⁸ O/ ¹⁶ O
2000	AOAC Official method 2000.19	Maple syrup	Ethanol (from fermentation)	SNIF-NMR	(D/H) _I , (D/H) _{II} , R
2001	OIV method OIV-MA-AS312-06	Wine	Ethanol	IRMS	¹³ C/ ¹² C
2004	AOAC method 2004.01	Fruit juice & maple syrup	Ethanol (from fermentation)	IRMS	¹³ C/ ¹² C
2006	AOAC method 2006.05	Vanillin	Vanillin	SNIF-NMR	(D/H) _I
2010	OIV method OIV-MA-AS312-07	Wine	Glycerol	GC-C-IRMS, HPLC-IRMS	¹³ C/ ¹² C
2014	OIV method OIV-MA-AS314-03	Sparkling Wine	CO ₂	IRMS	¹³ C/ ¹² C
2017	OIV method OIV-MA-AS311-09	Wine	Glucose, Fructose, Glycerol, Ethanol	HPLC-IRMS	¹³ C/ ¹² C

Overview

Principals of:

- IRMS measurements ✓
- Elemental Analyzer EA-IRMS ✓
- Equilibration- IRMS ✓
- ¹⁸O-Pyrolysis-IRMS and D/H-Pyrolyis-IRMS ✓
- GC/C-IRMS, GC/P-IRMS 🕤
- LC-IRMS 🕤

Methods:

- ${}^{13}C/{}^{12}C$ of wine ethanol \checkmark
- $^{18}\text{O}/^{16}\text{O}$ of Wine water \checkmark
- ¹³C/¹²C isotope ratio of glycerol in wines by Gas Chromatography Combustion GC/C- IRMS
- ¹³C/¹²C of glucose, fructose, glycerol and ethanol in products of vitivinicultural origin by HPLC-IRMS

Bulk versus Compound Specific IRMS

Source: Thermo Finnigan

GC-C-IRMS (GC-P-IRMS)

- GC-C-IRMS: determination of the ¹³C/¹²C isotope ratio or ¹⁵N/¹⁴N isotope ratio
- (GC-P-IRMS: determination of the D/H isotope ratio or ¹⁸O/¹⁶O isotope ratio)

Calderone et al., J. Agric. Food Chem., 52, 5902-5906 (2004)

GC-C-IRMS: Combustion reactor

- Combustion reactor: CuO / NiO / Pt or CuO / Pt in a quartz or ceramic tube
- Reoxidation on a regular basis
- 30 cm long
- Wires 0.125 mm diameter
- Temperature approx. 850 to 950 °C

GC-C-IRMS: Chromatogram

GC-C-IRMS: Derivatisation

Derivatisation, if compounds are not volatile or too polar for GC. Most common: Acetylation, Esterification, Silylyation

- Addition of the analyte element: e.g. methylation or acetylation
- Adulteration caused by non-quantitativ sample conversion
- Isotopic fractionation due to kinetic isotope effects

• AND kinetic isotope effect has to be considerd !

GC-C-IRMS: important points

- non-discriminating sample processing required
- derivatization of analytes under constant conditions
- higher concentrations required than for GC/MS
- baseline separated peaks, clean samples
- GC parameters: Column, Injection, Flow rate, temperature program,
- reoxidation cycle for the oxidation oven
- background correction (important for less clean samples)

¹³C/¹²C isotope ratio of glycerol in wines by Gas Chromatography Combustion GC/C- IRMS

Type of the method ${\bf IV}$

Method for the determination of the ¹³C/¹²C isotope ratio of glycerol in wines by Gas Chromatography Combustion or High performance Liquid Chromatography coupled to Isotopic Ratio Mass Spectrometry (GC-C-IRMS or HPLC-IRMS) (OIV-Oeno 343-2010)

Principle: The measurement of the 13/12C ratio of glycerol may enable possible detection of addition of gylcerol from maize (C4 plant) or from synthesis (fossil sources) to wine.

GC/C-IRMS: ¹³C/¹²C isotope ratio of glycerol in wines

GC/C/IRMS: ¹³C/¹²C isotope ratio of glycerol in wines – sequence example

Injection	Sample
1	Quality Control Sample 1
2	Quality Control Sample 1
3	Quality Control Sample 1
4	Sample 1
5	Sample 1
6	Sample 1
7	Sample 2
8	Sample 2
9	Sample 2
10	Quality Control Sample 1
11	Quality Control Sample 1
12	Quality Control Sample 2
13	Quality Control Sample 2
14	Sample 3
15	Sample 3
16	Sample 3

Injection	Sample
17	Sample 4
18	Sample 4
19	Sample 4
20	Quality Control Sample 1
21	Quality Control Sample 1
22	Quality Control Sample 2
23	Quality Control Sample 2
24	Sample 5
25	Sample 5
26	Sample 5
27	Sample 6
28	Sample 6
x	Quality Control Sample 1
У	Quality Control Sample 1
z	Quality Control Sample 1

GC/C/IRMS: ¹³C/¹²C isotope ratio of glycerol in wines – GC conditions example

- carrier gas: helium
- injector temperature 270°C
- injection of 0.3 µl in split mode (split flow 120 ml/min)
- polar capillary column, 25 m, 0.25 mm ID, 0.20 μm film thickness
- temperature program: 120°C (2 min), increase at a rate of 10°C/min up to 220°C (2 min)
- combustion at 950°C, reduction temperature 640°C
- reoxidation at regular intervals depending on the total amount of samples
- Note: correct values for volumes, temperatures, flows and times are indicative. Working conditions should be optimized individually.

GC/C-IRMS: ¹³C/¹²C isotope ratio of glycerol in wines - chromatogram

Source: Method OIV-AS312-07

GC/C/IRMS: ¹³C/¹²C isotope ratio of glycerol in wines – calculation

 The ¹³C/¹²C isotope ratio can be expressed by its deviation from a working reference.

$$\delta^{13}C_{\text{Sample}}$$
 (‰) = [(R_{Sample} / R_{reference}) - 1] * 10³

• Small variations may occur while measuring on-line due to changes in the instrumental conditions.

- A drift of the ${}^{13}C/{}^{12}C$ isotope ratio may occur within the sequence.
- A correction can then be calculated for each sample using linear interpolation.
- Quantification possible via the internal standard.

- High background O₂ (mass 32)
 - Combustion reactor is not conditioned
 - Reactor will bleed after reoxidation

- Switch the system into backflush-mode for some hours
- See also "System Tests and Trouble Shooting"

- High background H₂O (mass 18)
 ??
 - Nafion® old or damaged
 - GC-column bleed

- Inspect Nafion®-tube for damage and colour, replace if necessary
- Condition the GC-column
- See also "System Tests and Trouble Shooting"

- High background Ar (mass 40)
 - Atmospheric leak

- Inspect GC-injector
- Inspect all connections, all pressfits between the GC-column, the reactors and other capillarys
- See also "System Tests and Trouble Shooting"

Variable delta values

- Atmospheric leaks
- Reactor depleted
- Reactor not conditioned

- Inspect all connections, all pressfits for leaks
- Re-oxidize the reactor or replace it
- Check 32 Background
- See also "System Tests and Trouble Shooting"

LC-IRMS: Principle

- Chemical oxidation after aquous liquid chromatography

Source: https://www.bristol.ac.uk/chemistry/facilities/nerc-lsmsf/techniques/lcirms/

LC-IRMS: ¹³C/¹²C of Glucose, Fructose, Glycerol and Ethanol by HPLC-IRMS

Method OIV-MA-AS311-09

Type II and III method

Determination of the ¹³C/¹²C isotope ratios of glucose, fructose, glycerol, ethanol in production of vitivinicultural origin by high-performance liquid chromatography coupled to isotope ratio mass spectrometry (Resolution Oeno 479/2017)

LC-IRMS: ¹³C/¹²C of Glucose, Fructose, Glycerol and Ethanol by HPLC-IRMS: conditions

HPLC:

- injection volume 25 µl
- column: carbohydrate column
- mobile phase: pure water
- flow rate 0.4 mL/min
- column temperatute 80 °C

Liquid Interface:

- Solution of ammonium persulfate and Orthophosphoric acid
- Peristaltic pump flow: 0.6 mL/min
- Heater: 93 °C
- Flow Helium carrier gas: 15 mL/min
- Helium flow for drying: 50 mL/min

LC-IRMS: ¹³C/¹²C of Glucose, Fructose, Glycerol and Ethanol by HPLC-IRMS: chromatogram and calculation

$$\delta^{13}C_{Sam}$$
 (‰) = [(R_{Sam} / R_{St}) - 1] * 10³

with: Sam = sample St = standard $R = {}^{13}C/{}^{12}C$ isotope ratio

LC-IRMS: δ^{13} C of sugar compounds of honey

 Detection of adulteration with C₄ sugars (sugarcane, maize, sensitivity 1%) and C3 sugars (sugar beet, sensitivity 10%)

Elflein, Raezke, *Adipologie*, 39, 574-587 (2008): Adulterated polyfloral honey

LC-IRMS: δ^{13} C of sugar compounds of honey

Scientific support to the implementation of a Coordinated Control Plan with a view to establishing the prevalence of fraudulent practices in the marketing of honey

Results of honey authenticity testing by liquid chromatography-isotope ratio mass spectrometry

- all EU Member states, Norway, Switzerland
- 893 honeys analyzed by LC-IRMS
- 14,2 % found suspicious

Parameter	ave.	s. d.	range
$\delta^{13}C(\%)$ protein (p)	-25.2	0.7	-22.7 to -26.7
$\delta^{13}C(\% o)$ honey (h)	-25.5	0.7	-23.0 to -27.3
$\Delta \delta^{13} C (\% o) p - h$	0.3	0.4	-0.9 to 1.5
C4 sugar (%) *	0.3	0.9	0 to 5.7
δ^{13} C (%) fructose (fru)	-25.5	0.7	-23.2 to -27.5
δ^{13} C (%) glucose (glu)	-25.5	0.7	-22.7 to -27.2
$\delta^{13}C(\% o)$ disaccharides (ds)	-25.8	1.0	-22.5 to -28.2
$\delta^{13}C(\% o)$ trisaccharides (ts)	-24.7	1.0	-22.6 to -27.5
fru/glu ratio	1.30	0.21	0.92 to 1.82
ds (area %)	6.8	2.4	1.2 to 14.1
ts (area %)	1.8	1.1	0.0 to 8.0
oligosaccharides (area %)	< 0.7	_	-

Elflein, Raezke, *Adipologie*, 39, 574-587 (2008): Adulterated polyfloral honey

Bundesinstitut für Risikobewertung

Thank you for your attention

Melanie Gimpel

German Federal Institute for Risk Assessment Max-Dohrn-Str. 8-10 • 10589 Berlin, GERMANY Phone +49 30 - 184 12 - 0 • Fax +49 30 - 184 12 - 47 41 bfr@bfr.bund.de • www.bfr.bund.de/en